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Abstract. Complex measure theory is used to widen the scope of the m d y  of stochastic 
processes and it is shown how, with such an extension, the physical concepts of superposition 
and diffraction follow automatically. The Dinc-Feynman pam integral formalism is seen as a 
natural development. Several generic Markov processes are studied when extended to wmplex 
measures. The role of conditional expectations in this framework as propagating amplitudes 
is brought out with special reference to the Huyghens’ princple. Diffusion is studied in this 
extended formalism and the wntext in which the ScMjdinger or Dirac equation can be derived 
is stated. The Hamiltonian evolution and dewy of conelations require complex measures which 
are boundary values of analytic functions. 

1. Introduction 

The object of this contribution is to study the properties of an indexed family of complex 
measures. The motivation stems from the basic postulates of quantum mechanics that are 
currently in vogue. There are three apparently distinct ingredients contained in the postulates 
of quantum mechanics: they are, respectively, the uncertainty relations, Huyghens’ principle 
and the algorithms that tell us how to go from~a classical to a quantum system. In recent 
times the path integral formalism has become popular in view of its direct connection to 
probability theory with all the advantages of a collection of tools available for calculations. It 
is sad that these various developments are disjoint and ad hoc to a certain extent. Admittedly 
in the early formulation of quantum mechanics, the \I, function served as a mental block 
preventing further understanding in as much as only the squared moduli of \I, functions 
have a probabilistic interpretation. J von Neumann, to whom we owe ow present set of 
postulates, was inspired very much by the science of classical statistical mechanics. In a 
certain sense the set of postulates is a kind of compromise that has led to a rather artificial 
postulational structure. 

If we look at the problem afresh and interpret the two-slit experiment and other 
associated phenomena, we will be led naturally to the idea that the normal framework 

.of probability which deals with non-negative measures is not sufficient to describe quantum 
mechanics and that complex measures (which are amenable to both superposition and 
interference) are perhaps the best structure in terms of which problems of basic physics 
can be formulated and discussed. It is precisely such an idea that we pursue in this paper. 

Some earlier attempts to use generalized phase-space densities is due to Wigner (1932) 
and the dynamics of such a generalized phase-space density was worked out by Moyal 

0305-4470/94/020517+21$07.50 @ 1994 IOP Publishing Ltd 517 



518 

(1949) (see also Baker 1958, Jordan and Sudarshan 1961 and Gudder 1990). But in these 
cases these distributions are bilinear in the \y function; and linear complex superpositions 
of densities is nor a suitable density. 

The plan of this paper is as follows. In section 2 we present salient features of the 
standard complex measure theory and introduce the generalized stochastic process as an 
indexed family of complex measures. We then introduce in section 3 the notion of complex 
Markov processes and study such Markov processes and deal with the major problem of 
identi6cation of the Feynman path integral in the context of quantum mechanics of a single 
particle. We show explicitly that in the non-relativistic realm the Schrodinger equation 
d la path integral is a consequence of the Markov shucture provided that the theory is 
complete. In section 4 we present some simple processes and indicate the potential of 
the current approach. The role of the conditional complex expectation as a propagating 
amplitude is explored in section 5 with a review of Huyghen's principle in the following 
section. Random diffusion with a complex measure is studied in section 7. In section 8 the 
derivation of the Schrodinger and Dirac equations are outlined. Hamiltonian evolutions and 
the decay of correlations are studied in section 9 and the usefulness of analytic complex 
measures brought out in section 10. A brief summary is given in the concluding discussion 
in section 11. 

S K Srinivasan and E C G Sudarshan 

2. Complex measures and generalized stochastic processes 

In measure theory we generally start with completely additive set functions which lead to 
signed measures (see e.g. Pitt 1968). The Hahn-Jordan decomposition enables us to deal 
with non-negative measures exclusively, the theorems that are proved for such measures 
being capable of extension to signed measures with trivial modifications. It is a standard 
exercise in measure theory to extend the concept to complex measures too (see e.g. Halmos 
1950 p 120, Ash 1972). Thus in general a complex measure A can be defined for any set 
A E U b y  

A(A) = AI(A) + iAz(A) (2.1) 
where AI and A2 are two finite signed measures on the measurable space (Q, U). We now 
'set (for reasons that will become obvious presently) 

A(Q) = 1 (2.2) 
and also insist IA(A) I < 1 for any A E U. It is also a standard result that it is indeed possible 
to define an induced non-negative measure 1A1 called modA by 

where f is any measurable complex function such that I f 1  < 1, the supreme being over all 
such functions f. We will have occasion to resort to this measure. 

We now introduce the notion of a random variable. This is best done following 
Pia, by choosing Q = 'R (the set of reals). If we wish to have finitely many random 
variables (XI. XZ.. . xn),  we make copies of Q and introduce Q = QI @ 0 2  @ Q3 . . . @ 0,. 
The probability distribution ~ ( x )  is called the joint distribution of (x ,  , X Z ,  . . . xn);  we can 
consider the sets XI of Q for which XI @ Q2 @ . . . @ Qn is measurable and we are naturally 
led to the measure 

PI(X1) = P(XI @ Qz @ . . . @ Q"). (2.4) 
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The special case when 

Y ( X 1  0 x2 0 . . xn) = Yl  (X1)YZ(~Z) . . . Pn ( X " )  (2.5) 

Let us now consider the case of a single random variable. We shall deal with the 

(2.6) 

s(fi +ifz)dx = 1 (2.7) 

holds corresponds to the case when the random variables X I ,  x2, . . . , x, are independent. 

important case when the measure is absolutely continuous; then we can write 

= [ f i ~ ~ )  + i f d x ) ]  dx. 
We have 

or 

In view of the complex nature of the measure, we should be reconciled to the situation 
that the expectation of the random variable will in general be a complex number. 

If we set the random variable as 3 .  the expectation of g may be written as 

Let 

q = g -a - is (2.10) 

be a new random variable where q is generated by the measurable space (Qb,  Fp) and CZp 
is the set {x - iB, x real) for fixed B. We then have 

E[tll= 0 (2.11) 

and in this case we define the spread Sq or Sg as 

81' = sq = / Ix-a- ipI  2 Ifi+ifzldx=m 2 . 

In other words, the spread is defined to be the expected value of the square of the displaced 
random variable with reference to the mod measure. 

In terms of complex measure as probability we can deal with 

~r [lg-a-iPI > e }  (2.12) 

which is indeed a complex number. That such a probability can be defined in an appropriate 
measure space follows from the remarks above. We can, for simplicity, set 

j x  f 2 ( x ) d x  = 0 (2.13) 

without loss of generality. Then we have 

(2.14) 
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The bound given by (2.14) can be a multiple of the variance of the random variable only 
in limited context. This makes it rather difficult to interpret (2.14) as some kind of a 
Chebycheff bound. If p does not vanish, we indeed have 

FY( IC -a - $1 < gd.,} = O (2.15) 

Given such a complex measure, we can define a standard non-negative additive set 

S K Srinivasan and E C G Sudarshan 

where ud,, is some positive number. 

function which is a conventional measure by 

(2.16) 

Ash (1972) has shown that thii is a legitimate and well defined measure; we need consider 
those sets for which @(A)) # 0. Once ]AI has been defined, any equivalent measure (for 
which sets of zero measure coincide) can be constructed. For some purposes it may be 
convenient to consider the lmodlZ measure defined by 

2 
([AI(&)) : E l ,  Ez,  ... E, are disjoint such thatU Ei 

These two measures have the same sets of measure zero. 
To clarify the ideas presented so far we offer a few examples. 

(i) Binomial distribution. 
The random variable is discrete and we have 

where p1 and pz  are any two complex numbers. The normalized mod measure gives rise 
to the distribution 

W C  = m I = + m  = I~ i l~ lpz l " -~ ( l~ i l + I~z l ) - " .  (3 
On the other hand the mod square measure gives rise to the distribution 

It is worth noting that the character of the distribution remains the same in either of the 
cases, namely, mod and mod square. 

(ii) Exponential distribution. 
The random variable is continuously distribuied with 

The mod measure gives rise again to an exponential density which, when suitably 
normalized, is given by 
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(iii) Normal distribution. 
In this case the density function is given by 

The mod measure yields again the normal distribution with zero mean and variance equal 
to u2. 

The mod square measure also yields the normal distribution although with a different 
parameter. We can define the complex Gaussian random variable by 

t = m+C + i q  

where 5' and 11 are independent random variables and have the same Gaussian distributions 
with zero mean. This will enable us to define a Gaussian process presently. 

(iv) Poisson distribution. 
The random variable is discrete and the probability given by 

if n = 0, 1.2,. .. 
otherwise. 

n! Pr(<=n]= 

The mod measure yields a Poisson distribution: 

where p = 101 + $1. On the other hand, the mod square yields an odd distribution: 

We proceed next to define a generalized random sequence (discrete stochastic process) 
or a generalized random function (arbitrary stochastic process). To do this we note that we 
need to extend the definition of a generalized random vector ( X I ,  X Z ,  . . . , x.). This is done 
by simply following the procedure recommended by Pitt (1968) (see section 18). We first 
introduce simple sets as finite unions of rectangular sets of functions x ( t )  satisfying a finite 
set of conditions 

a,  4 x(t,) < b,. (2.18) 

Since simple sets for a finite set of points t, form a ring, the totality of all such simple 
sets also form a ring. Then we start with a complex valued additive set function po(Z) 
defined on the ring of simple sets of C2. If we constrain the values po(Z) on the ring of sets 
associated with tl , t z ,  . . . tn be those of a complex probability distribution in R., then it is 
indeed possible to define a complex measure p(x) in f2 in such a manner that every simple 
set is measurable and p(Z) = po(Z). This shows that it is possible to deal with an indexed 
family of complex measures in a consistent way irrespective of whether the index labels 
a discrete set or a continuum. We call such an indexed family a generalized stochartic 
process. 

The notions of conditional probability measure, Markov property and stationarity can be 
carried over in toto for such a generalized stochastic process. We shall examine presently 
the consequences in detail. Now we present some simple examples. 
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2.1. Simple Poisson process 

We recall that the Poisson process can be defined in many different but equivalent ways. 
We can view a Poisson process as a process of intervals whose lengths form a family of 
independent and identically distributed (ID) non-negative random variables with a common 
exponential distribution. For complex measures we introduce Fx(.) by 

S K Srinivasan and E C G Sudarshan 

(2.19) 

where (Y > 0. This measure generates a mod measure whose normalized density is given 
bY 

(Y e-ux dx . (2.20) 

Thus we conclude that the mod measure leads us to a family of 1ID random variables with 
a common exponential distribution 

Fx(x) = 1 - e-ax. (2.21) 

Thus the process of ID intervals remains the same under mod measure and hence leads to 
a Poisson process with Re(0r 4- ij?) as parameter. 

A Poisson process can also be viewed as a homogeneous Markov process whose 
infinitesimal generator is given by 

z (n ,  n’, A) = Pr {x( t  + A) = n ] x ( t )  = n’) 
+&.,(1 -AA) (2.22) 

which leak to the result 

(2.23) 
where A is any complex parameter with positive real part. We note that the infinitesimal 
generator also leads to the set of differential equations 

d ( n ,  t )  = -An(n, t )  +An@ - 1, t )  
n’(0, t )  = -hrr(O, t )  
n(n, f )  = O  n CO. 

n > 0 
(2.24) 

It is interesting to note that mod measure. applied at any stage (either at the level of 
infinitesimal generator or later) leads to the Poisson process with parameter IAl. This is 
possibly due to the non-diffusive nature of the Poisson process. 

2.2. Yule-Furry Process 

This process can be viewed as a homogeneous Markov process with infinitesimal generator 
given by 

z(n,  n‘, A) = Pr [x( t  + A) = n1 x(t) = n’} 
= (1 - AnA)&,., +h(n - l ) A & - ~ , ~ c .  (2.25) 

which leads to the result 
z (n ,  t )  = Pr[X( t )  = nIX(0) = 1) 

- - e-At ( l  - e-At)”-I . (2.26) 
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Now if mod measure is applied at the level of the infinitesimal generator, we are led to the 
result 

(2.27) ~ ( n ,  t )  = .+1f(1 - e-IWy-1, 

On the other hand, if mod measure is applied at the end, we have 

For fixed t ,  the distribution is geometric in either case. The Yule-Furry process can also 
be viewed as a (non-stationary) point process. Let us fix the time interval and take it as 
[O, t ] .  Assuming F'r[x(O) = 11 = 1, we can write down the exclusive density (!sown as the 
Janossy density in the literature on Poisson processes) as the finite dimensional distribution 
denoted by 

(2.29) 

Jn(tl, tz . . . t,)dtl dtz . . . d,  t, (2.30) 
denotes the probability of incidence in each of the intervals &,ti + at;) with 
0 c ti c i, i = 1.2, . . .n. J. can be computed; for 0 c tl c tz < . . . c t. c t we 
have 
J.(ti, t z . .  .tn)dti, d t z . .  .dt. 

- - e--Mi--U(fa--h) . . . - nA(t, - tn-l)h(2h). . . (nA)dtldtz.. . dt, e-(n+l)A(t-rn) 
(2.31) 

so that 

n 
J - - n  ! Ane-'' n e-A(r-rJ. (2.32) 

If mod measure is applied at this stage, then the parameter is obviously Re A which will 
lead to results different from either of the altematives mentioned earlier; this was to be 
expected. 

i=l 

3. Markov processes and their idenmeation with standard physical processes 

As suggested earlier, we define a stochastic process as an indexed family of complex 
measures. The existence of a measure space over which such a stochastic process (or a 
randomfunction) is defined is proved along lines exactly similar to those adopted by Pitt. 
Such an indexed family of complex measures is best defined by the conditional smcture.: 

F.(x,tlxo,to,. . .x , , t , )  = Pr(X(t) < XlX( t0 )  = x o ,  X ( t i )  =XI  ... X(&) = x n )  (3.1) 
where 

< tl < tz < ... < tn < r n = 0, 1.2, ... (3.2) 
or by the density functions 

fn(x. t ;  xo. to; x1. tl,  . . .&, 
= Pr { x  < X(t) < x +&IX(to) = xo, X(t1) = X I , .  . . X(t.) = X"] . (3.3) 

A process is called Markov if 

F"(x,t~xo,to,xl,tl, . . . X n , Z A  = Fz(x , t Ix , , t , )  (3.4) 
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f ” ( X ,  tlrlol ro.x1, tl . . . x n .  h) = f2 (1, tlx,, t.1 (3.5) 
for every choice of xo, xo, X I ,  xz . . .x. and to, t i ,  tz . . . t,, subject to to 4 ti 4 tz . . . < t. < t. 
A similar definition holds when the process is discrete-valued or t is discrete-valued or both. 
If we denote by F ( x ,  t )  the probability 

(3.6) Pr[X(t) 4 5 )  or f ( x .  t)dx = Pr[x  4 x( t )  4 x + dx) 
then we have the Chapman-Kolmogorov relation 

f d x ,  tlxo. to) = s f d x .  tlx’,  t’)fz(x’, t‘lxo. t0)dx‘ 

f z ( x ,  t )  = / fz(x,  tlx’, t ’ ) f (x ‘ ,  z’)dx’ 

W z ,  tz) = 1 K(xz,  tzlxi, tl)+(xi,ti)dxi . 

for We(t0, t )  (3.7) 

and 

for ~ t ’  < t (3.8) 

(provided t’ is in the domain of definition of the process.) We may write this in a more 
suggestive fashion as 

(3.9) 

(i) We now make a special choice leading to the Schrodinger equation. Take tz = tl + e  (e 
small). We choose 

1 K = - exp 
A 

i (xz-xl)z} exp { - - e V  (*~;XZ,~)} - {i;” E 

For such a choice we have for arbitrarily small E 

K d x z = I .  s 
(This proves that K is a genuine complex probability measure.) 

Then we have 

(3.10) 

(3.11) 

KZ also satisfies an identical equation if we apply this to equation (3.7). 
This is in fact a special case of the general Fokker-Planck equation. 

(ii) Fokker-Planck equation. We note that fz satisfies the Chapman-Kolmogorov equation, 
choose to = 0 and assume time homogeneity: 

fz(xlx0,  t + A) = / fdxlz, A) fz(z lx0,  t)dz . (3.12) 

Now we put some constraints: 

a,(z, A) = (x  - z)”fz(xlzA)da (3.13) s 
and that a n / A  has a non-zero limit for n = 1 and 2 

(3.14) 
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TO obtain an equation for f2, we consider 

(3.15) 

where @ is a smooth function that tends to zero sufficiently fast as x + &CO: 

Now use the Chapman-Kolmogorov relation: 

In the first term we expand @(x) in powers of x - z to obtain 

Since this holds for V@, we have the equation 
a f 2 ( ~ l ~ a .  t )  a 1 az 

= -- [fz(xlxo. t )  A&)] + 2 [fdxlxo, t )  B ( x ) ] .  (3.20) 

Thus the kernel function cm’satisfy a very general type of equation, the Schrodinger 

equation being a very special case. We have considered a homogenous process; we can 
relax the same, in which case we are led to timedependent potentials. 

a t  ax 

Let us consider a special case when 
ii?l 

B(x)  = a constant = -- 
m 

f2(xjxot) exp (-: 1 A W C )  = gZ(xtx0. t )  

(say). 

Then we can use the standard transformation 

(3.21) 

in which case the equation reduces to 

This is the Schrodinger equation! 
If A were to be a function of f also, we would have an additional term 

within the square bracket on the right-hand side. 
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4. Jump processes 

In this case we can define a Markov process and then specify the same by the infinitesimal 
generator: 

Pr{X(t + A) 

S K Srinivasan and E C G Sudarshan 

= nJX(t) = m} 
= S,, (1 - A[u +a+ mA+ mk1I +&,+I [uA i 

+S,,-i [aA + mpA] + O(A) 
where A, p, U, a are complex constants. Several standard processes can be subsumed under 
this general process: 

(i) A pure birth process of the Yule type (popularly known as Furry process although Furry 

(ii) A biah and death process: v = 01 = 0. 
(iii) Poisson process: A = U = a = 0. 
(iv) A population process of thermal photons obeying BE statistics: a = 0, A = U. 
(v) A population process of coherent photons: same as (iii) above. 
(vi) A single channel queuing process with Poisson arrivals: A = ~p = 0 (with same 

appropriate boundary conditions at n = 0). 
(vii) A random telegraph signal process: take the state space modulo [O, I]. Set A = p = 0. 

For purposes of illustration let us consider the case of population process of photons by 

rediscovered the Yule process 21 years after Yule!) U = p = a = 0 

setting a = 0. Introducing: 

g(u. t )  = E [.""'I X ( 0 )  = 1, U = 01 

we obtain (by interpreting the process as a branching process) 

ag(u, t )  2 - = -(A + p)g(u, f) + A [g(% a] + LL at 
aG(u, t )  

at 

g(u, 0) = U ,  G(u.0) = 1. (4.3) - = -uG (U, t )  + U G(u,  t)g(u, t )  

Solving we obtain (for U = A) 

(P -A)  G(u, t) = 
(p  - Az + A(z - 1) 

' 

If we set 1/11 > p.1, then we have a limit distribution: 

lim G(u, t )  = - - - . (BE distribution) 
E-tW W - AZ 

p - A  A 
pE(n) = - (--) (equilibrium distribution). 

P 

(4.4) 

(4.5) 

If we use mod measure, 

(4.6) 
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If we use. mod square measure 

(4.7) 

It is interesting to note that either measure retains the geometric (BE) nature of the 
dishtibution. The population point process models of photon population have been studied 
(Jakeman 1980, Shepherd 1981, Jakeman and Shepherd 1987) using positive definite rate 
constants. An extension of these models to include non-Markov evolution had been provided . 
by Srinivasan (1988, 1990) and Srinivasan and Sridharan (1990). The above model with 
complex rates may be made appropriate to describe photon population. 

As the next example, consider the telegraph signal process. This is just a two-valued 
process. The different probabilities can be explicitly evaluated using the Markov nature of 
the process: 

U + -e-(=+")' a 
Zll( t )  = h [ X ( f )  = IlX(0) = I] = - 

a+u a+u 
a U (4.8) 

ZW(C0) = - 1 Zll(W) = - 
f f + U  U + U  

On normalization 

(4.9) 

Instead of the complex rates, we need the mod or (mod)2 of the rates. The above 
process has been discussed in detail by one of us (Srinivasan 1988) in connection with 
point process models of cavity radiation and detection. Erber et a1 (1989) have discussed 
the process in connection with the modelling of dark and bright periods generated by 
resonance fluorescence and quantum jumps. They have of course used positive-definite 
probabilities; it may be worthwhile to study these models using complex probabilities. A 
very special model of the telegraph signal process was considered by Ramakrishnan et a! 
(1960) as well as Gaveau et al (1984). While the former were concerned with neutron 
transport and backscattering, the latter used the model to obtain one-dimensional relativistic 
electron motion. Srinivasan (1963) had dealt with the same process in connection with 
a model of emulsion polymerization. We shall presently show how a model of this type 
within the framework of complex measures can lead to the Duac equation of an electron 
with a relativistic potential. 

Now we proceed to discuss conditional complex probability amplitudes and their 
properties. Such amplitudes have been studied right from the time Schrodinger introduced 
his wave equation. It was Dirac (1933) who proposed the action principle to formulate 
the basic problem of quantum mechanics in terms of the composition law for the bracket 
(q,lqr) which in turn had been extensively used by Feynman (1948) for the calculation of 
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probability amplitudes in specific problems. We will now demonstrate that the composition . 
law of Dirac comes out naturally as a consequence of the Markov property of generalized 
stochastic process (of complex measures) and that ‘the sum over paths’ is the realization of 
the addition of the complex measures of inclusive events. 

S K Srinivasan and E C G Sudarshan 

5. Conditional expectations: the propagating amplitude 

*Let us now define conditional amplitudes. 

~ ~ K K , K ~ . . ( X ~ Y ;  y1, YZ ,...) A-KI lim P r { x < x j < x + A I x ~ = ~ ;  x t , = y l  , . . . ] / A .  (5.1) 

This conditional probability has the Markov property if 

.&l~2...(xl~; Y I ,  . . .) = ~fjdxly) k > kl # kz # . . . . (5.2) 
To define the Markov property it is not necessary to restrict attention to real conditional 
probabilities: it could equally well be applied to complex conditional probability amplitudes. 

We recognize that fik(x1y) is a complex probability amplitude with respect to x indexed 
by the prior value y and the labels j, k, j t k. This amplitude satisfies the Chapman- 
Kolmogorov relation 

fjr(xlr) = 1 fjc(xlz)fLe(zlY)dz j < e < k. (5.3) 

Thus the complex-indexed amplitudes have the Markov chain structure. The indices j, k, e 
are ordered parameters associated with the conditional distributions and may be discrete. 

However, if j,k,e are treated as (continuous) time labels, one could consider 
infinitesimal intervals and differential equations of motion. They would then ‘propagate’ 
the complex amplitudes. The conditional amplitudes f ( x l y )  then become the unfolding of 
the law of time evolution: the Hamiltonian 

i -  a + N  ( x , z , r )  a 
at 

(5.4) 

leads to the time-ordered exponential: 

h,12(x~r) = T (expo[ X(WI) W). (5.5) 

Since the operators at different times may not commute, the solution for the time-ordered 
exponential is the Green function 

tz 2 tl 
where (v&, r)] are a complete set of solutions to the homogeneous equations 

i - - N  x , - - , f  rp(x, t )=O. ( a a ,  ( aax ) I  (5.7) 

The choice of the retarded function is in accordance with the directed property of the 
Chapman-Kolmogorov equation. 

In dealing with the Hamiltonian in this form, it should contain the displacement operator 
with respect to x either explicitly or implicitly. Hence the complete set of operators x ,  a/ax 
are non-commuting: in quantum mechanics, or more generally in wave theories, this is 
clearly seen. In the former case we have the momentum operator p which is realised as 
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@/i) @/ax). In classical particle mechanics, the Hamiltonian operator is in fact the Poisson 
bracket of the Hamilton function 

i x = ; [h(% P h  .IP&. (5.8) 

The Green function G(x, y )  is, in all cases,~afunction of x ,  y indexed by t. 
While the forward propagation can be carried out for arbitrary future times, the tracing 

back, in general, can be done only for finite times. In general, the Markov processes are 
contractive; cyclic processes are exceptions. But with complex amplitudes we can have 
self-adjoint Hamiltonians with the probability of either forward or backward propagation. 
Of course, we could also have contractive semigroups of evolutions. The two classes of 
processes are distinguished in terms of the spectrum of the evolution operator. For the 
symmetric case the spectrum is unimodular while in the unsymmetric case there are spectra 
within the unit circle in the complex plane. 

6. Huyghens’ principle 

The generic physical example of conditional expectation is the (generalized) Huyghens’ 
principle for time dependent (optical) pulses. In this case (for scalarlight) the conditional 
probability f ( x l y )  is the response at y for unit stimulus at x at an earlier time. The 
Huyghens’ kernel satisfies both the Green function equation 

and the Markov property 

fr,&lu) = J dz fi,~(xlz) frt2(zly); ti >*t > tz. 

v k )  = / dy fit ,(4u)vt0(~) .~ 

(6.2) 

If the initial condition is given in terms of vro(x) then 

(6.3) 

Mutatis mutandis, this formalism applies equally well to other wave-like structures 
including acoustics and quantum mechanics. 

If one is interested in only first-order (in time) differential equations, the retarded solution 
is the natural solution. When there is a second-order equation there are other possibilities. 
If the propagation is in a homogenous medium, one can distinguish invariantly between 
positive and negative-frequency solutions and restrict attention to the positive-frequency 
solutions only. These are the analytic signals of Gabor (1946) and Wolf (1955); see also 
Sudarshan (1969). In a way, we realize this even for the Schrodinger equation written as a 
two-component real equation. 

But when external fields (or self-interactions) are included, there are transitions between 
the positive- and negative-energy states and so we cannot restrict attention to positive 
energies only. We can still deal with retarded functions but the causal Stuckelberg-Feynman 
time-ordered Green function, which propagate positive frequencies fonVard and negative 
frequencies backward, is more useful: 

, 

~. . ~ 
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8. Derivation of the Schrodinger and Dirac equations 

Define the complex measure ~ ( y ,  t) and the conditional probability p ( x .  z ,  t ,  A)& by 
p ( x ,  z; t ;  A)& = P r ( x  < y ( t  = A) < x + d x l y ( t )  = z }  
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(8.1) 
a ( y , t ) d y = P r I ~  c y @ )  < Y + ~ Y I =  d z ~ ( ~ ~ z . t . 0 ) .  s 

The Chapman-Kolmogorov relations obeyed are 

Then for any smooth $(y)  with the expansion 

there is the relation 

If we now require the following conditions suggested by a generalized random walk 

The following relations hold for arbitrary smooth @(y): 

where~a, b, c are related to A, B ,  C by simple relations. If we compare it with the 
Schrodinger equation 

we get the correspondence 
A2 A2 - b(y. t) = -- 
2 2m 
Cb. t )  = a(y, t )  = 0 

On the other hand, the Schrodinger equation with an extemal scalar potential & ( x )  and 
vector potential A(z) given by 

(8.10) 
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(h/i) @ / a x ) .  In classical particle mechanics, the Hamiltonian operator is in fact the Poisson 
bracket of the Hamilton function 

1 
H = [h(% P), .Ipb.. (5.8) 

The Green function G(x,  y) is, in all cases, a’function of x ,  y indexed by t .  
While the forward propagation can be carried out for arbitrary future times, the &acing 

back, in general, can be done only for finite times. In general, the Markov processes are 
contractive; cyclic processes are exceptions. But with complex amplitudes we can have 
self-adjoint Hamiltonians with the probability of either forward or backward propagation. 
Of course, we could also have contractive semigroups of evolutions. The two classes of 
processes are distinguished in terms of the specl” of the evolution operator. For the 
symmetric case the spectrum is unimodular while in the unsymmetric case there are spectra 
within the unit circle in the complex plane. 

6. Huyghens’ principle 

The generic physical example of conditional expectation is the (generalized) Huyghens’ 
principle for time dependent (optical) pulses. In this case (for scalar light) the conditional 
probability f(xly) is the response at y for unit stimulus at x at an earlier time. The 
Huyghens’ kemel satisfies both the Green function equation 

Mutatis mutandis, this formalism applies equally well to other wave-like structures 
including acoustics and quantum mechanics. 

If one is interested in only first-order (in time) differential equations, the retarded solution 
is the natural solution. When there is a second-order equation there are other possibilities. 
If the propagation is in a homogenous medium, one can distinguish invariantly between 
positive- and negative-frequency solutions and restrict attention to the positive-frequency 
solutions only. These are the analytic signals of Gabor (1946) and Wolf (1955); see also 
Sudarshan (1969). In a way, we realize this even for the SchrCdinger equation written as a 
two-component real equation. 

But when external fields (or self-interactions) are included, there are transitions between 
the positive- and negative-energy states and so we cannot restrict attention to positive 
energies only. We can still deal with retarded functions but the causal Stuckelberg-Feynman 
time-ordered Green function, which propagate positive frequencies forward and negative 
frequencies backward, is more useful: 

(6.4) 
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The difference f(xly) - F(x ly )  is a solution of the homogenous equation 
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f ( X l Y )  - F(XlY)  = PdX3')PdY.O). (6.5) 

The Huyghens' amplitude and the Green function are time dependent functions. For a 
single step transition one can take the timeFourier transformation to get the monochromatic, 
time independent Green function 

E p 4  

This amplitude does not satisfy the Markov property; and is not in accordance with 
Huyghens' principle. 

7. Random diffusion with a complex measure 

Define random variables xx (independent and identically distributed) with 

Pr{xx= + l ) = p + i q  
Pr{s = ~ - 1 } = p + i q  
Pr{xk = + 0) = -2iq. 

The special choice leads to real E h ] :  

E h 1  = P - i 
and 

Rob { X X  = + l , O ,  -1) 1. 

Define the stochastic process [Y, : n = 0,1,2. . . .) by 
n 

r . = c x x  P r { Y ~ = o ) = l .  
I 

(7.1) 

(7.4) 

Then [Y,J is a random walk process and R{Y. = j ]  can be computed using multinomial 
coefficients. Note 

(7.5) 
EIYd 
Var [Y,,] = 2 n  (2py +iq). 

= n (P - F) 

Now we pass on to a continuous version by setting t = nA (the steps being at intervals 
of length A) and the magnitude of the step Sy so that (Y. H Y,) 

(7.6) 

Note that the initial distribution is concentrated at the origin if we use the continuous density 
Z(Y ,  t ) , Z ( Y . O )  = 6 ( Y ) .  

We define 
- SY E, = Y; - E[Y;] = Yp - t ( p  - p ) - .  

A 
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Note that f, is also initially concentrated at the origin. We note the process Y; and hence 
ft are Markovian and hence satisfy the Chapman-Kolmogorov equation. By expressing 
n ( y ,  t )  in terms of n(y, t - s t ) ,  we obtain 

N Y .  t )  = J d Y  + (P - P ) ~ Y  - S Y ,  t - + iq) + n(y  + ( p  - p)Sy  + Sy, t - A)y + iq) 
(7.7) +n(y + ( p  - j)6y, t - A)(-2iq). 

The above equation follows from the discrete version 

P ( s , x )  =n@- I , n - l ) ( p + i q ) + i t ( s + l , n -  l ) ( j + i q ) + x ( s , n -  1)(-2iq). (7.8) 
Notice that in order that the particle be in position~y at f, at t - A it should have been 
at y + ( p  - P)Sy, where the second term is the amount hy which it slides back since we 
have subtracted the expected value; and the third term is the positive jump. Now expand 
the right-hand side with respect to y: 

n ( y , f ) = ~ d ~ , f - A ) + -  ~ y ( p - B - [ ~ + B ] ) ( ~ + i q )  
ay an 1 

+(P - B + t p  + BI)SY(B + i d  + ( p  - B)(--2iq) 

-=- a% (AY)’ an(y’ t ,  
U’ (4 p j  + 2iq) where U’ = iim - 

at 2 ay At  (7.9) 

The equation with the initial condition a(y ,  0) = 6(y)  yields, for i > 0, the broadening 
Gaussian 

Note that, as expected, the diffusion is proportional to t. 

E&] = 0 
var [ j q  = (4pB + 24)u’t 

(7.11) 

In the above analysis we prove a limit theorem that in the random walMdiffusion limit 
y, + j t  in probability and that the distribution is norma.!. 

In these calculations, if we had used either the (mod) measure or the (mod)’ measure the 
resulting solutions would have been normal.and diffusive with suitably changed parameters. 

The case of p $  = 0, that is, p = 0,1, is esspecially iateresting in that we can obtain 
the Schrodinger equation in the absence of potentials: 

. a  a% 
I - z ( y , t ) = - u  q- 

at ay2 

where 

(F)-Lm 
is the free particle mass in the Schradinger equation 

(7.12) 

(7.13) 

(7.14) 

With suitably enlarged starting point we can also derive Dirac’s relativistic equation. 
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S. Derivation of the Schrodinger and Dirac equations 

Define the complex measure n(y,  f )  and the conditional probability p ( x ,  z ,  t ,  A)& by 

p ( x ,  Z; t ;  A)dx = Pr ( x  < y(t = A) < x + drly(t) = Z ]  
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(8.1) 
Z(Y. Ody = Pr Iy < ~ ( t )  y + d y l =  &P(Y, Z ,  t ,  0). s 

The Chapman-Kolmogorov relations obeyed are 
r 

Define 

Then for any smooth *(y) with the expansion 

If we now require the following conditions suggested by a generalized random walk 

The following relations hold for arbitrary smooth * (y) :  

(8.4) 

(8.5) 

where a, b, c are related to A, B .  C by simple relations. 
Schrodinger equation 

If we compare it with the 

a h2 
at  2m 

ifr -* = -- v2* 
we get the correspondence 

h2 A2 -b(y,t) =-- - 
2 2m 

c(y. t )  = a(y, t )  = 0. 
On the other hand, the Schrodinger equation with an external scalar potential & ( x )  and 
vector potential A(z)  given by 

@ (8.10) 
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can be generated by an appropriate transformation of the dependent variable JI. So 
the generic Chapman-Kolmogorov relations correspond to the Schrodinger equation with 
extemal scalar and vector potentials. 

When the extemal potential 4 reduces to a constant and the vector potential vanishes, the 
Schrodinger equation is trivially shifted from a free Schrodinger equation, and the solutions 
differ by the phase exp(-i#t/fi) which has the power series expansion 

(8.11) 

This maybe thought of as being due to an interaction at random times with the external 
potential #, the number of interactions in any interval being Poisson-distributed, very much 
like the telephone traffic at a switchboard! This interpretation of interaction with a constant 
scalar potential is even more appropriate at the present juncture where particle theories 
consider the mass matrix of leptons to be the broken symmetry vacuum expectation value 
of a trilinear Yukawa coupling with one or more scalar Higgs fields. 

Gaveau et a1 (1984) have recalled attention to this circumstance for the relativistic 
electron by treating the kinetic mass as a scalar potential coupling two chiral fields of 
opposite chirality. Each chiral field obeys one of the Weyl neutrino equations. The 
corresponding (perturbed) solutions maybe identified with particles travelling with the 
velocity of light but mutual flips at a constant mean rate proportional to mass. The successive 
approximations correspond to the power series expansion of exp(im@ t / E )  where @ is the 
Dirac matrix which is off-diagonal in the chiral representation of the Dirac spinors (Bose 
etal 1959). 

The doubling of the components could have been incorporated from the beginning in the 
Chapman-Kolmogorov equations and the complex amplitudes in terms of a chirality index. 
A priori such a decomposition should be there for all relativistic equations (Foldy 1951) 
since the Lorentz group over the field of complex numbers splits into the direct product 
of two chiral rotation groups locally. However, a spin s z particle of finite mass has 
2(2s + 1) components while the corresponding massless particles have 2 x 2 components 
only. Thus to get relativistic invariance for s > 1 we must include degenerate particles of 
zero mass of spins s, s - 1 , .  . . ,O for integer spins and s, s - 1,. . . , $ for half-integer spins. 
So this random walk derivation for relativistic particles is not very natural for spins greater 
than $. However, we can, following Foldy, write the equations in the form 

(8.12) 
a 
at 

i - u* = w*u* +mp 

where U* are the positive and negative chiral components with (2s + 1) components on 
which act the spin matrices S* with the generalized mass matrix p which intertwines the 
positive and negative chiral components; and can interpret mp as generating a random-jump 
sequence. 

9. Hamiltonian evolutions and decay of correlations 

The Hamiltonian evolution kernel is defined not only for positive but also for negative 
times. These kernels satisfy the unitarity property 

(9.1) 
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for all x ,  x’ ,  t, to. Consequent!y the complex amplitudes preserve their norm: 
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Hence the (mod)2 norm is preserved. Furthermore, since this is a non-negative measure, it 
is a standard measure which can be superimposed on the complex measures. 

Despite the time invariance of the quadratic norm, the complex amplitudes mapped 
by these kernels can exhibit (approximate) decay properties and thus provide a framework 
for describing metastable excitations. To see how a decay can be obtained for a system 
in which the evolution operator has unimodular spectrum [e-iol(r-ro)} (the Hamiltonian has 
real spectrum [-CO < w < CO}), we consider the standard example of a state which is a 
complex linear combination of (improper) eigenstates of the continuous spectrum with a 
spectral density. We write 

, 

and 

(9.4) 

(9.5) 

satisfies 

A(t, t’) = +*(x,  t ) q ( x .  t’)dr 

(9.6) 

This result can be easily obtained by a contour integration. The open contour from -w 
to +CO along the real axis can be closed by adding either the semi-circle at infinity in the 
lower half-plane for t - t’ > 0 or in the upper half-plane for f - f’ < 0. In either case the 
integrand is 

s 
- e-iirii-t’i e*(x,  o ) + ( ~ ,  0 ) k  = .&iiw . 1 , s - 

I 4 ’  I t  
2 

Ig(o)l = x-’ (W - w ~ ) ’  + -r2 

The (mod)’ non-negative probability measure is then monotonically decreasing: 

p(? - t’) = - tf)12 = e-irlir-f’i, 

Without loss of generality we may choose r > 0 so that we may write 

A(r, t’) = e-&rlr-f’i 
rit-ti . p( t ,  t’) = e- 

Note that the wave amplitude still has a constant (mod)’ norm: 

J ~ ( x ,  t ) ~ ,  ?)& = J ~ ( z ) * ( x )  h. 

(9.7) 

(9.8) 

(9.9) 

(9.10) 
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In obtaining this explicit form we had a spectral density g(w) which was analytic in the 
interval -00 < o c 00. If the Hamiltonian had a spectral density of this form but 
restricted to 0 < o < 00 we would not obtain this form exactly, but for r > 0, t - t' > 0 
the expression for A(t)  becomes 

By adding the quarter-circle at infinity in the lower right hand side we can rewrite 

which can be approximated by the first term for most values of t - t' except when it is 
very large ( 2 100 rl) or very small. For very large values the second term contributes 
an inverse power term which dominates the exponential, while for very short time A ( t )  has 
a vanishing derivative at t = 0. 

The crucial property involved in all these evaluations is the fact that the function g(o) 
is the boundary value of an mlyt ic  function of w. The contour deformations in the actual 
evaluation maybe related to the generic possibility of extending the complex measure to 
complex values of the frequency space analytically. We therefore. turn to the study of 
analytic complex measures. 

10. Analytic complex measures 

Let @(U) be a complex measure on a measurable space Q = Io). For fixing our ideas we 
choose Q to be one or more copies of the real line or segments thereof. Then any complex 
measure (whose (modulus)z norm is integrable over a) may be approximated in probability 
by analytic complex measures. Thus analytic complex measures are dense in the (linear) 
space of complex measures. We have nested sequences of analytic complex measures with 
increasing domains of analyticity. (Sudarshan et ai 1978, Sudarshan and Chiu 1993, Chiu 
eta! 1992). 

Given any analytic complex measure @(w) we may associate it with a measure defined 
over the extended space E = I{] 

*(a) * W). (10.1) 

The (mod)' measure can also be extended by the formula 

I*(o)lZ + @*(Z')@(C 3 a ( 0  f (10.2) 

The right hand side is an analytic function in E and therefore the survival amplitude 

A ( t )  = @*(<*)@(<)e-irr d t  = a({)e-"'d{ (10.3) 

may be evaluated by analytic continuation of the integrand from 52 to E and deformation 
of the contour. 

The generic @(I) leads to a(<)  being the boundary value of an analytic function in E 
but does not specify the domain of analyticity. Under rather general conditions one can 
express a(<) as the sum of two functions U+({) and a-({) which are analytic in the lower 
and the upper half-planes, respectively. This is displayed by the formulae 

s s 

U&) = g dwa(o) (( - w f k)-' (10.4) s 
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where E is a positive infinitesimal. Then 

A&) = / a*(f)e-’f‘d< (10.5) 

vanishes for one sign of t (t ;O) but can be evaluated in terms of the contributions from 
the singularities of a*(() in the lowerhpper half-plane. If the singularities are only poles 
these contributions would be the residues at these poles. The pole contributions would be 
decaying exponentials. 

11. Summary and conelusion 

Motivated by the need to enlarge the theory of stochastic processes, we have dealt with 
an indexed family of complex measures and studied the salient features of generalized 
stochastic processes that arise from them. We have demonstrated that such a class of 
generalized stochastic processes encompasses in itself complex amplitudes extensively used 
in the formulation of quantum mechanics. Besides we have shown that the composition law 
for the transformation brackets introduced by Dirac (1933) and extensively employed by 
Feynman for the formulation of the path integral formalism can be viewed as a consequence 
of the Markov property of the underlying stochastic process. The evolution equation and the 
operator formalism of the first quantized version are shown to be natural consequences of 
the Markov property. It is shown that the generalized theory of stochastic processes is viable 
enough to describe the generalized version of simple standard stochastic processes l i e  the 
binomial process, Poisson process and most general jump processes like population process 
beside the celebrated diffusion process. A demonstration is also provided leading to the 
version of central limit theorem in which a sum of independent and identicaliy distributed 
random variables converge in probability to a complex normal variable. Thus, while the 
complex nature of the probability measure can bring out the physical process of interference, 
the Markov property brings to the fore the diffractive nature of the conditional probability 
amplitudes. Many interesting properties like decay of correlations and the meromorphic 
structure of amplitudes that are normally studied on the basis of von Neunann algebras 
and their representations can be studied conveniently by the direct use of the properties 
of generalized stochastic processes, a noteworthy feature being that the Schrijdinger (and 
Dirac 1958) equation with potentials can be brought within the framework of the Fokker- 
Planck equation of appropriate stochastic processes. Since a complex measurable space has 
a rich structure in that new positive definite measures can be defined over it, it makes itself 
amenable to ‘observation’. Although we have not proved any limit theorem other than the 
central limit theorem leading to complex diffusion, it is indeed possible to establish such 
theorems using the ideas presented in this paper. We hope the formulae proposed in the 
paper can be used in other areas where interference and diffraction predominate over other 
additive properties. 
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